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Numerical computations of the unsteady propagation of multidimensional laminar 
flames are difficult to perform because the structure of the flame must be resolved and the 
thickness of the flame is often several orders of magnitude smaller than the characteristic 
dimension of the field. Two scaling transformations are discussed which make possible 
such computations by reducing the computation time to acceptable levels. The a-trans- 
formation is associated with the spatial uniformity of the time-varying pressure and is 
shown to be valid for low-Mach-number flows. It reduces computational time by either 
reducing the total number of time steps or, in the RICE code, the number of 
iterations required each time step. The fi-transformation is related to the small 
thickness of the flame with respect to the characteristic dimension of the field and is shown 
to be useful for high Reynolds number flows. It reduces computation time by reducing 
the number of necessary grid points which, in turn, is achieved by broadening the flame 
front without altering the flame speed. The g-transformation was introduced by T. D. 
Butler and P. J. O’Rourke (“Proceedings, Sixteenth Symposium on Combustion, August 
1976,” pp. 1403-1516, The Combustion Institute, Pittsburgh, 1977). The validity of the 
two transformations is shown theoretically and through a series of computer calculations. 

INTRODUCTION 

In this paper, two scaling transformations are introduced which make possible 
the numerical computation of unsteady, multidimensional laminar flame propagation 
in premixed charges. A “flame,” also called a deflagration, is a low-speed wave 
supported by exothermic chemical reactions [l]. Because complex geometries and 
complicated chemical kinetic rate dependencies are usually associated with prediction 
of flame propagation in practical systems, numerical solution is required. Numerical 
solution is, in turn, made difficult by two properties of laminar flames. First, typical 
Mach numbers are very small, of the order of 0.01 or less. Second, the thickness of the 
laminar flame is typically much smaller than the dimensions of the physical region of 
interest. Equivalently, one can say the Reynolds number based on a characteristic 
dimension of the combustion chamber is very large. 

The scaling transformations allow one to use traditional Eulerian, compressible 
flow computer codes to solve multidimensional and unsteady problems with laminar 
flames. These traditional codes must compute with a time step which resolves the 
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acoustic wave motion. In low Mach number flows, there is a great disparity between 
this time step and the larger time scales for changes in other features of the flow 
field. Much computational time is wasted in resolving the acoustic motion, whose 
only effect on the flow is to maintain a nearly uniform pressure in space. The 01- 
transformation, that is one of the two transformations discussed in this paper, shows 
that when the Mach number is small, the dependent and independent variables 
can be scaled in such a way that the solution is unaffected, except for being scaled in 
time. By increasing the propagation speed of the computed flame by a factor of a, 
the disparity between the time scales for acoustic wave motion and laminar flame 
propagation is reduced, but the essential property that there is such a disparity is 
preserved by setting an upper bound on the value of a. An Eulerian computer code 
must also use the same computational cell size outside the flame, where it is not 
needed, that is used to resolve the flame front. The /J-transformation, which is the 
second transformation to be discussed, shows that when the Reynolds number is 
large, the dependent and independent variables can be scaled in such a way that the 
solution is unaffected, except that the flame zone thickness is increased by a factor /3. 
The disparity between the space scales inside and outside the flame zone is lessened. 
Again, by not choosing /3 too large, the essential property that there is such a disparity 
is preserved. 

Classically, vanishingly small Mach numbers or very large Reynolds numbers 
have been used to simplify the equations, either, in the first case, by a formulation of 
the equations of motion which ignores acoustic waves, or, in the second case, by 
boundary-layer approximations. The resulting equations are simpler in appearance, 
but their numerical solution is still difficult. The approach followed in this work is 
different. It will be shown that considerable computational efficiency can be gained 
by retaining the full equations and scaling the Mach number to a larger (but not too 
large) value and the Reynolds number to a smaller (but not too small) value. In 
compressible boundary-layer theory, a transformation which is frequently used and 
which resembles the /Stransformation is the Howarth transformation [2]. The Howarth 
transformation has a definite form and the motivation for its use is to simplify the 
equations so that an analytical solution can be obtained. The /Ltransformation induces 
spatial distortion like the Howarth transformation, but is more general in that /3 
can be chosen in many ways, and the motivation for its use is to thicken the computed 
flame to facilitate the obtainment of numerical solutions. The /3-transformation is 
also similar in concept to the artificial viscosity of von Neumann and Richtmyer [3] 
for the computation of hydrodynamic shock waves. But it satisfies the additional 
constraint of preserving the structure of the flame to obtain the correct flame speed 
El). To calculate the correct shock speed, it is only necessary to satisfy the jump 
conditions across it. 

For the computation of multidimensional laminar flames, methods other than the 
w and /!-transformations have been proposed, but they present limitations and have 
not yet been successfully tested. An alternative to the oc-transformation is the numerical 
solution of the equations governing low-speed flows, which neglect acoustic wave 
motion. One such equation set is given in the section on the derivation of the 01- 
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transformation. But these equations are elliptic in nature, and numerical solution of 
elliptic equations can be very time consuming. For example, the ICE method [4], 
used in the calculation of this paper, reduces in the limit of low Mach number flow 
to the well-known MAC method [5] for incompressible flows. Yet, as will be seen, 
solving the equations with unscaled variables using ICE takes significantly more time 
than solving them using the a-transformation. An alternative to the /&transformation 
is the use of an adaptive grid scheme, such as in the ALE [6] technique, to provide 
finer resolution in the flame zone. To date, the complexity of using such a procedure 
in more than one space dimension has not been surmounted. 

In the following section, we will describe the OL- and /%transformations in more 
detail. Their theoretical justification and the conditions under which they are valid 
will be presented. Next, the results of a series of numerical calculations of laminar 
flame propagation in a premixed methane-air charge will be detailed. The purpose 
of the calculations is to show that the two transformations do indeed exhibit the 
expected properties when the conditions for their validity are respected and break 
down when they are not. 

DERIVATION OF THE SCALING LAWS 

For future reference, we state here the equations of change for a chemically reacting 
mixture of ideal gases. The assumption of constant and equal specific heats of all 
species is made in order to simplify the equations, although it in no way affects the 
results we will derive. Continuity equation for species k: 

% + V * k@‘> = V * (P DV plclp) + W, c R&h - d.d, 
Z 

P =z:Pk; 
k 

Mixture momentum equation 

$ + u * vu + l/p vp = l/p v * 2, 

1 = p(Vu + (vuy] + hV . I@; 

Mixture energy equation 

(1) 

(2) 

~+v~(puh)=~+~-Vp+V~(KVT)+~:V~+~RzQz; (3) 
Z 

Equations of state 

p,,Y-* - ph, 
Y 

h = c,T. 

(4) 

(5) 



188 O’ROURKE AND BRACCO 

The functional dependencies of the first and second coefficients of viscosity, p and A, 
the thermal conductivity K, the mass diffusion coefficient D, and the reaction rates 
R1, are assumed to be known, although the specific form of these dependencies is 
immaterial for the derivations of this section. 

Beginning with these basic equations, our strategy will be to derive an approximate 
set of equations based on either the low Mach number or high Reynolds number 
assumption. It will then be demonstrated that these approximate equations remain 
invariant under certain transformations of the dependent and independent variables. 

Derivation of the a-Transformation 

We first use an order-of-magnitude estimate for terms in the momentum equation (2) 
to show that the pressure is nearly uniform if certain conditions are satisfied, the 
principal one being that the Mach number is small. Let 

i = t/t, ) 

f = x/L, 

ii = u/u0 , 

B = PIP0 7 

P = PIP0 9 

where characteristic quantities to , L, u,, , p. , and pO are chosen in such a way that 
p”, 8, p, and their derivatives with respect to 2 and % are all of the order of unity. The 
nondimensionalized momentum equation becomes 

n 

~~+ii.vpB+ 
PO 1 vi3 PO 1 v -=-- 

pou,2p” PO POUOL B 2 
. 5, 

00 

(6) 

where p. is a characteristic value of the pressure. Three assumptions are made: 

Re = e 3 O(1). (A3) 

Then, since every term in (6) is at most of order unity, we have 

I VEP I - = O(W) < 1; 
PO 

that is, departure of the pressure from its mean value is small over a distance L. If the 
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entire flow region can be subdivided into a small number of subregions of dimension 
L6 , in each of which the above inequalities hold, then we have in addition 

+< 1, (7) 

where 8~ is the difference in pressure between any two points in the flow field. Let 
p(t) be the volume averaged pressure and 

P’b, t) = P(X, t) - F(t) 

the pressure fluctuation. Further order-of-magnitude estimates based on (6) and 
(Al) show that the pressure fluctuation and viscous dissipation terms in Eq. (3) and 
the pressure fluctuation term in (4) may be neglected. The momentum equation, 
equation of state, and energy equation then become 

g + u * Vu + l/p Vpl = l/p v * 2, 

J-Y-l ----/.A, 
Y 

L? 

and 

!!$+V-(poh) =$+V-(KVT)+~&& 
I 

(10) 

One further equation of change for p(t) will be used, and this is derived taking into 
account the boundary conditions of the problem. For the applications considered 
in this paper-combustion in a closed chamber of fixed dimensions-the following 
boundary conditions are used: 

U’nlwall =o, 01) 

an . t 
an I =o 

wall 
(free-slip walls), (12) 

aT 
an I W&l1 = 

0, 03) 

aP, =o -- 
( )I an P 

9 
wall 

(14) 

where n is the unit outward normal and t a unit tangent vector to the wall. By (12) 
and (13), we are ignoring momentum and energy losses in wall boundary layers. 
Although the validity of the ol-transformation will be demonstrated for these boundary 
conditions, it can be veried that the transformation remains valid for a variety of 
different boundary conditions, including: (i) no-slip, constant-temperature walls, 
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(ii) closed volume with prescribed wall motion (provided the wall velocity is scaled 
properly), and (iii) unconfined combustion in the open atmosphere. 

Multiplying Eq. (10) by (y - 1)/r, using (9), and solving for @/dt yields 

g + YP v * u = ty - 1) p . (K VT) + T RQ,/. (15) 

Integrating (15) over the confining volume Y and using (11) and (13) gives the result 

With dp/dt given by (16), Eq. (15) may be viewed as an equation for the divergence of 
the velocity field. Equations (l), (5) (8), (9), (15), and (16) are the approximate 
equations governing low Mach number flows. 

Care must be exercised in specifying proper initial conditions for the equations 
due to their elliptic nature. Once the thermodynamic variables have been specified, 
the didrgence of the velocity field is determined by Eq. (15). We are free to specify 
only the initial vorticity field, which must, of course, be solenoidal. Accordingly, the 
initial conditions will be the following: 

where q is the vorticity. 

ato) = PO > (17) 

Pk(X, 0) = P&4 (18) 

rtx, 0) = row, (19 

Under the one-parameter ol-transformation, the dependent and independent 
variables are scaled in the following manner: 

P * = 01/A, 

x* = ah, 

K* = aK, 

D* = aD, 

R: = aRl , 

t* = t/m, 

u* = au, 

P ‘* = $p’, 

co* = 40, 

(20) 

where the superscript asterisk denotes the transformed viriables. All other variables 
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remain unaffected by the transformation. The parameter 01 must, in general, be a 
constant. 

It will now be demonstrated that the approximate equations together with the 
specified boundary conditions (11)-(14) and initial conditions (17)-(19) remain 
invariant under the ol-transformation. It is easy to verify that the equations remain 
invariant. For example, when the transformation is applied to the momentum equa- 
tion (8), the result is 

in which a factor l/$ multiplies each term. The boundary conditions remain invariant 
since they are homogeneous. To show that the initial conditions remain invariant, 
one must show that the velocity field which is determined by Go = aTo and (V * u)L,, = 
u(V * u)~=,=, is identical to 01 times the original initial velocity field. But these velocity 
fields have identical divergence and vorticity and hence must be the same. 

Note that all diffusivities and reaction rates are multiplied by the factor 01, and that 
the Mach number is scaled by a factor of 01 while the Reynolds number remains 
invariant. This is consistent with classical formulas [l] for flame speed and thickness, 
which predict that when the diffusivities and reaction rates are increased by a factor 
of 01, the flame speed will increase by a while the flame thickness will remain unchanged. 

The solution to the complete equations (l)-(5) using the scaled diffusivities and 
reaction rates will be close to the solution of the approximate equations of this section, 
as long as conditions (Al)-(A3) are satisfied by the scaled characteristic quantities. 
Substituting from (20) into (Al)-(A3) gives 

AI*2 = a2A42-g 1 (21) 

as the only condition for this to be true (as long as (A2) and (A3) are satisfied by the 
unscaled variables). Hence the transformation will be valid as long as (21) is satisfied, 
although a more precise upper bound for 01 must be determined by numerically solving 
the complete equations (l)-(5) and varying the value of 01 as it is shown in a later 
section. 

Computational time saving is realized because the sound speed c remains unchanged 
while the total problem time T is scaled by a factor of 1 /OL In traditional hydrodynamics 
codes for the solution of compressible flows, the Courant sound speed restriction on 
the magnitude of the computational time step (I u 1 + c) &/8x < 1 must be observed. 
In low-speed flows, since c+ = c, the time step St* used in solving the transformed 
problem can be taken to be nearly equal to 6t. Since for the transformed problem 

it is seen that the number of computational time steps needed to achieve solution of 
the entire problem is reduced by a factor of I/a. In our applications, we used a 



192 O’ROURKE AND BRACCO 

computer program employing the ICE technique [4], which obviates the need to 
observe the Courant sound speed restriction. The limiting criterion on the magnitude 
of the time step in our applications is that for diffusional stability: 

D &/6x2 < Q. 

Since D* = olD, we have to take St = St/a. Nevertheless, computational timesavings 
is still realized since in the iterative procedure used in ICE to solve the acoustic wave 
motion, the number of iterations is proportional to the distance a sound wave must 
travel in one time step. Since cc St* = c St/a, the number of iterations is reduced 
by a factor of ~/CL. 

Derivation of the S-Transformation 

The general idea behind the /!Ltransformation, that the flame zone can be artificially 
thickened to the dimensions of the computational mesh, was first presented by 
Butler and O’Rourke [7]. Our objective here is to examine the assumptions needed 
for the validity of the Btransformation more carefully. The major assumption is that 
the thickness of the flame is much smaller than any other characteristic length of the 
flow; that is, 

where the reference length L is the smallest of such lengths as the dimension of the 
chamber, the local radius of curvature of the flame, and the characteristic lengths of 
possible nonuniformities in the flow field away from the flame. Although we do not 
define the flame thickness 6 here, there is usually little doubt, in practice, when 
assumption (Bl) is satisfied. 

Assumption (Bl) implies that the flame front may be approximated as a discon- 
tinuity in an inviscid, nonconducting, nondiffusive mixture of gases. Indeed, within 
a flame with a flame velocity uf , convection and diffusion times are of the same order 
[I], implying 

t conv m s/u, 

and 

and hence 

(22) 

The maximum induced gas velocity, U, is given by [l] 
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where Q is the heat release per mass of reactant and T,, is the temperature ahead of 
the flame. In practice, Q/c,T, > 1. Recalling that for gaseous mixtures, SC = p/pD = 
O(l), it follows that 

Re =f.f$ 

PD u uf L =--- 
CL Uf D 

> O(L/S) > 1. (23) 

In addition to assumption (Bl), we will have to require that the mixture away from 
the flame be either chemically frozen or in equilibrium; that is, 

or 

tch < Llu (equilibrium flow) (B2a) 

tch > L/u (frozen flow), (BW 

where t& is a characteristic chemistry time. 
Nondimensionalizing the variables in Eqs. (l)-(6) by our reference parameters, 

using (23) and either (B2a) or (B2b), and recalling that for gases, Pr m SC m 1, one 
deduces the following well-known equations for the flow ahead of and behind the 
flame front: 

g+o.vu+-= l 0 
PVP ) 

g+ v-(pub) +u.vp; 

frozen : 

2 + V . (pku) = 0 (or w = 0); 

equilibrium: 

t$ + V * (CJI) = 0 (or * = 0) 

(24) 

and 

and 

R,f = R:, 
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c, = moles of atom a per unit volume, 
ck = moles of molecule k per unit volume, 

vka = number of atoms of type a in molecule k, 

and RLf and Rsb are the forward and backward reaction rates of reaction 1. 
In the frame of reference of the flame, the equations which govern the flow in the 

flame zone are those for a planar, one-dimensional, steady combustion wave propaga- 
ting into a uniform mixture. This can be seen by writing the governing equations in a 
boundary-layer coordinate system which moves with the flame. Assumption (Bl) 
implies that gradients in the field variables in a tangent direction can be neglected in 
comparison to those normal to the flame and that curvature effects can be ignored. 
Also 

where uO is a characteristic velocity. Equation (25) says that the residence time in 
the flame is much smaller than a characteristic time for changes in the fluid variables. 
This, in turn, implies that the flow in the flame zone is quasi-steady and that we can 
neglect acceleration terms which arise due to our non-Galilean frame of reference. 
With x being the coordinate normal to the flame and u the fluid velocity in the x- 
direction, the approximate equations for the flow in the flame zone become 

and 

&uh) =u~+~!K~)+(2~+h)(~)2+CRLel. w-9 
1 

Having been divided into outer and flame regions, which are governed by Eqs. (24) 
and (26~(28), together with equations of state (4) and (5), the flow field is then recon- 
structed by specifying that the conditions to be satisfied immediately ahead of and 
behind the discontinuity in the outer solution should be those which are satisfied at 
x = -co and x = + co by the inner flame region. These interface conditions are, of 
course, the mass burning rate and the Rankine-Hugoniot relations. In addition, the 
boundary condition along rigid walls is 

u * bvall = 0, (2% 

and the initial conditions are specification of pressure, density, and velocity fields 
consistent with boundary condition (29) and the interface conditions. 
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The fl-transformation can be viewed as an expansion of the coordinate normal to the 
burn front. With /3(x) an expansion factor, let 

x* = 5p(x’) dx’, s 
D* =pD, 

P * = BP, 

A* = pi, 

K* =pK, 

R,* = R,#. 

(30) 

All other variables are unaffected by the transformation. 
It is easy to verify that the approximate equations remain invariant under the 

transformation. For frozen flow, Eqs. (24) are inviscid with no chemical reaction 
and hence are unaffected by the transformation. For flow in chemical equilibrium, the 
effect of multiplying both the forward and backward reaction rates by l/p cancels 
out of the equation. Also initial and boundary conditions, which are specified for the 
outer regions, are not affected. For the enthalpy equation (28), we have 

B (K*$)+8&* +x*,(~$$+8;R:@ 

in which a factor j3 appears in each term. Equations (26) and (27) can similarly be 
verified to remain invariant. 

In contrast to the a-transformation, the diffusivities are multiplied by p, the reaction 
rates are divided by /3, the Mach number remains invariant, and the Reynolds number 
is decreased by a factor l//3. This is also consistent with classical formulas for the 
flame speed thickness [l], which predict that under these circumstances the flame speed 
will remain unchanged, while the flame thickness will increase by a factor /3. 

The solution to the approximate equations of this section will be close to the solution 
of the complete equation (l)-(5) as long as the transformed flame thickness satisfies 
(Bl). Since the solution to the approximate equations is independent of j3, except that 
the flame thickness is altered, solutions to the complete equations should be close 
to each other as long as 

a* <L. (31) 

To determine a more precise upper bound for 6*, we will solve the complete equations 
numerically and vary the value of /3. 

Computational time saving is realized because the number of computational cells 
can be reduced. In a calculation in two space dimensions, for instance, if the burn zone 
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thickness is increased by a factor /3, the computational cell size 6x* for the transformed 
problem can be taken as 

6x* = p 6x 

and the number of computational cells is reduced by a factor l//3”. 
In the following section, we will describe, in detail, how both transformations 

have been used to compute the propagation of a premixed, laminar flame in a closed 
chamber. 

COMPUTATIONAL RESULTS 

The calculations, which were performed to test the validity and range of applicability 
of the scaling transformations, were made with the computer coce RICE [8]. RICE 
solves the complete two-dimensional, unsteady equations of change for a chemically 
reacting mixture of ideal gases. It employs a fixed, Eulerian computational grid of 
uniform cell size and uses the ICE technique. 

The computational parameters were selected to simulate an experiment performed 
at Volkswagen R&D in a constant volume vessel [9]. Although in this paper, the 
computed results are not compared with the measured ones, we briefly describe here 
the geometry and initial conditions of the experiment in order to justify our choice of 
the computational parameters. The Volkswagen combustion bomb, is depicted 
schematically in Fig. 1. The top and bottom walls are glass windows through which 
high-speed Schlieren filming of the combustion event is made. In the experiment, for 
which data were supplied by Volkswagen R&D, the charge was a stochiometric 
methane-air mixture at an initial pressure of 3 atm and temperature of 450°K. The 
initially quiescent mixture was spark ignited at the side wall. After a short initial 
period during which the flame propagated outward to the top and bottom walls, a 

GLASS WINDOWS 

FIG. 1. Schematic diagram of the Volkswagen combustion bomb. 



SCALING TRANSFORMATIONS FOR FLAMES 197 

nearly two-dimensional flame was observed in Schlieren photographs. The total 
combustion time of 40 msec was of the order one would expect from reported laminar 
flame speeds of methane-air mixtures [lo]. For such laminar flames, the assumptions 
needed for both the CL- and j%transformations are well satisfied. 

Figure 2 depicts the geometry used in the calculations. The circular cross section of 
the bomb is approximated with an octagon, and the symmetry of the experiment has 

FIG. 2. Finite-difference mesh used in the calculations. 

been exploited to halve the combustion chamber and the computational time. The 
computational cells were of uniform size, 6x = 8~ = 0.23 cm, in all calculations 
except one, in which 6x = 8~ = 0.115 cm was needed to resolve the flame adequately. 
The chemistry and species data used in the calculations are given in Table I. A 
simplified one-step kinetics model was employed with a heat release Q reduced by 
15 % from the heat of complete combustion of methane and air, to take into very 
rough account effects of dissociation and wall heat transfer. The specific heats of the 
reactant species A and product species B, which were constant, were taken to be 



198 O’ROURKE AND BRACCO 

TABLE I 

Chemistry and Species Data 

Species 
cv 

(ergs/g-OK) Y 

W 

W-de) 

A 7.54 x 106 1.39 27.62 

B 1.01 x 10’ 1.29 27.62 

Reaction: A ---f B +*Q 

WI 
- - [Al2 cf exp 

4 dr- [ 1 - T 

cf = 1.0 x 1015cm3/mole-sec 

Et = 20,000”K 

Q = 7.19 x 10” ergs/mole reactant 

p = 1.34 x 10-5T1/2 g/cm-set 

Pr = SC = 0.75 

those of nitrogen at 450°K and 2400”K, respectively. The shear viscosity p was taken 
to be 

p = 1.34 x 10-5P2 g/cm-set, 

which closely approximates the viscosity of air in the temperature range under 
consideration. The heat conduction and mass diffusion coefficients were computed 
from Pr = SC = 0.75, and h = p was adopted. 

The initial conditions used in the calculations are summarized in Fig. 3. The initial 
flame position was chosen to match that observed in the experiment approximately 

1, 6 = 0.5 
/ ‘L 

r p =4.4xlo-4g/cc r 
‘\ 

T = 2360 “K 

I, 
p = 2.3x lO-3 g/cc 
T=450 “K 

cm 

.=2.0 cm 

FIG. 3. Initial conditions used in the calculations. 
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10 msec after ignition. Estimated temperature and species profiles within the flame 
front were set in a strip 0.5 cm thick and located 2 cm from the ignition site. Ahead of 
the flame the temperature was 450”K, while in the burned mixture the temperature 
was 2360°K. The initial pressure was 3 atm and the fluid velocities were set to zero. The 
boundary conditions were adiabatic, free-slip walls. We note here that neglect of wall 
momentum and energy losses is consistent with our earlier assumption that the flow 
outside of the flame zone is approximately invisicid. 

The starred values for the diffusivities and reaction rates used in the calculations were 

The form for fi, which can vary in space and time, was taken to be 

where A = constant. This results in a constant value for the diffusivities; for example, 

CL* -olscL=ad. -- 
P P 

The values of CII and /3 were varied independently in the parametric study. With 
/3 = fi,, = 5Op/p, four calculations were made using values of cx = 1, 10,25, and 100, 
and with ~11 = 10, three calculations were performed with p = i/3,, , /I,, , and 2&, . 
Some of the results of these calculations are summarized in Table II. 

In the calculations in which 01 was varied, it is seen that increasing cx resulted in a 
decrease in computational time of nearly a factor of 3. The Mach numbers in the 
last column are the maximum Mach numbers seen in computer printouts at inter- 
mediate times in the calculations. In all calculations except that for which LX = 100, 
the predicted dependence of the transformed Mach number on 01 was satisfied. In the 
01 = 100 calculation a rapid rise in the pressure occurred and supersonic velocities 
were observed. The conditions for the validity of the ar-transformation had been 
violated as shown by the fact that the computed Mach number was much higher than 
the expected one of M*2 = 0.15. 

The pressure as a function of the untransformed time for the various values of CL is 
plotted in Fig. 4. On the scale of the graph, the calculations with 01 = 1 and 10 resulted 
in identical pressure histories. When cy was raised to 25, oscillations were superimposed 
on the overall rise in pressure; the timing of the oscillations correlated with that for 
acoustic wave travel across the chamber and back again. From the runs with 01 = 25 

581/33/z-4 
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TABLE II 

Parametric Study 

a 

Bo = 5OPlkrue 

Computational 
St time” 

(s4 (min) M*z 

1 5 x 10-S 22.8 1.5 x 10-Z 

10 5 x IO-6 12.3 1.5 x 10-a 

25 2 x 10-e 8.3 9.4 x 10-a 

100 5 x 10-1 8.0 ? 

a = 10 

B 
St 

(sed 

Computational 
time* 
(min) (cm) 

&l a 2.5 x 1O-6 86 0.4 

A 5 x 10-G 12.3 0.8 

2F 2.5 x 1O-6 14.0 1.6 

“6x = 6~ = 0.115cm. 
b IBM 360/91. 

0 5 IO 15 20 25 30 35 

t I llxec) 

FIG. 4. Pressure histories showing affects of varying 01 for fixed p = PO = 50~1~. 



SCALING TRANSFORMATIONS FOR FLAMES 201 

and 01 = 100, it was inferred that the cu-transformation becomes invalid for M*2 
between 0.01 and 0.15. 

Table II also shows the saving in computer time which is realized when /3 is increased. 
In the calculation for which /3 = i/3,, , the mesh had to be refined by a factor of 2 to 
resolve the flame, and the time step also had to be halved. This resulted in nearly a 
factor of 8 increase in the computational time. The flame thickness & in the right-hand 
column is an average thickness inferred from temperature contour plots made by the 
computer program. Again the predicted dependence of the flame thickness on the 
value of /? is confirmed. Representative isotherm plots are displayed in Fig. 5. 

t= IOmtec 

t=2Omsec 

P=P, 8=28, 

FIG. 5. Comparison of temperature contour plots at two different times for the three calculations 
in which fi was varied. 

In Fig. 6 are shown the pressure histories of the three calculations with /3 varying. 
The three curves are seen to be in substantial agreement, with the small discrepancies 
near the end of the calculations attributable to the fact that the thicker flames in the 
larger fl cases “see” the wall sooner. The curves have been drawn so that their common 
origin is that time at which the pressure reached 5 atm. Although the flame thickness is 
different in the three calculations, the same initial guess for the flame thickness was 
used in each case. Hence there is a short time, which will be different for each calcula- 
tion, during which the flame profiles will relax to their quasi-steady values. In order 
that this not influence the comparison, we have taken the computed profiles at 5 atm 
as new initial conditions. 
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J 
32 

t (msec) 

FIG. 6. Pressure histories showing the affects of varying fi for fixed a = 10. 

FIG. 7. Selected flame variables obtained at t = 18 msec in the calculation for which a = 10 
and ,G = 5Op/p. 
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Representative profiles of the temperature, density, fuel mass fraction, and reaction 
rate through a cross section of the flame front are displayed in Fig. 7. It can be seen 
that the flame is resolved with about four computational cells, corresponding to 
Sh = 1.0 cm. Since the diameter of the chamber is 8.0 cm, good agreement is seen 
despite the fact that 6*/L > l/S. 

In general, 6* must be large enough to resolve the flame front, but small enough to 
satisfy the condition 6* < L. In any numerical study, then, the value of p, and also 
of OL, should be varied in order to test the results for invariance as was done in this 
section of our study. 

SUMMARY 

Two scaling transformations have been discussed and verified which make possible 
the calculation of multidimensional, unsteady laminar flames. 

The primary assumption needed for the ar-transformation is that of low Mach 
number flow. In this transformation, the diffusivities and reaction rates are multiplied 
by 01 and the time is scaled by a factor l/a?. Scaling of initial velocities and wall bound- 
ary velocities is also required. 

For the /%transformation, the flame thickness must be small compared to any other 
characteristic length of the problem. The diffusivities are multiplied by j? and the 
reaction rates by l//3. The transformation only affects the solution in the flame front 
by increasing the flame thickness by a factor of j? without changing the flame speed, and 
boundary conditions need not be scaled. 
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